Assoc Prof Joël Brugger

Research Scientist Mineral Sciences

+61 8 8207 7451


Joël obtained his PhD at the University of Basel, Switzerland in 1996 for work on the geochemistry and mineralogy of metamorphosed syn-genetic exhalative Mn deposits. After a post-doctoral position at Monash University, he joined the South Australian Museum and the University of Adelaide in 2002.


Position at Other Organisation

  • Lecturer, School of Earth and Environmental Sciences, The University of Adelaide


Research Interests              

Joël established the Minerals, Microbes & Solutions research group, dedicated to using state-of-the-art experimental techniques to study the transport and deposition of metals and mineral-microbe-fluid interaction in geological environments. Joël has a strong interest in the application of physical sciences to Earth Sciences. He also conducts active research in descriptive mineralogy, and in uranium and REE geochemistry.


Current Research Projects 

Deep and smelly: exploring the roles of pressure and sulphur in hydrothermal metal transport.  J. Brugger, D. Testemale, D. Sherman.  2013–2015, Australian Research Council Discovery project, $340,000.

Hot (100–600 ˚C), salty fluids carry metals deep in the Earth’s crust. These fluids are responsible for the formation of Australia’s mineral wealth. We will combine state-of-the-art in-situ spectroscopic techniques with recent advances in first-principle molecular dynamic simulations to study the roles of pressure and sulphur on the transport of metals in the upper and middle crust (≤50 km) at the molecular level. We will test the hypothesis that different regimes in metal transport exist in shallow (<4 km) an deep (>10 km) hydrothermal systems. This understanding will enable to improve reactive transport modeling under “extreme conditions” for metals such as Au, Cu, Pb, Ni, and Co.


Awards & Achievements

  • Queen Elizabeth II Fellow, University of Adelaide (2002–2007)

  • Fellow of the Mineralogical Society of America (2005)

  • H. Andrewartha Medal, presented by the Royal Society of South Australia to a young Australian scientist for his/her exceptional achievements (2006) 

  • New mineral ‘joëlbruggerite’, Pb3Zn3(Sb5+,Te6+) As2O13(OH,O), named to honour Joël's ‘contribution to mineralogy, in particular the description of new minerals and for his work on Te mineralogy’.  Technical publication: Mills, SJ; Kolitsch, U; Miyawaki, R, et al. (2009) Joëlbruggerite, Pb3Zn3(Sb5+,Te6+)As2O13(OH,O), the Sb5+ analogue of dugganite, from the Black Pine mine, Montana. American Mineralogist 94: 1012–1017. (2008)

  • ARC Professorial Fellow, University of Adelaide (2008–2012)



  • PhD, University of Basel, Switzerland (1996)


Current Teaching Responsibilities          


Running MTER course (7 days), ‘Mineral Exploration’, Arkaroola (May 2013)


Media Expertise

Ore deposits;  minerals; water-metal-microbes; geology. 



  1. Mei, Y., Sherman, D. M., Liu, W., and Brugger, J. (2013).  Complexation of gold in S3--rich hydrothermal fluids: evidence from ab-initio molecular dynamics simulations. Chemical Geology 347: 34–42.

  2. Brugger, J., Etschmann, B., Grosse, C., Plumridge, C., Kaminski, J., Paterson, D., Shar, S. S., Ta, C., Howard, D .L., de Jonge, M. D., Ball, A. S., and Reith, F. (2013).  Can biological toxicity drive the contrasting behavior of platinum and gold in surface environments? Chemical Geology 343: 99–110. 

  3. Elliott, P., Brugger, J., Cardoc-Davies, T., and Pring, A. (2013).  Hylbrownite, Na3MgP3O10•12H2O, a new triphosphate mineral from the Dome Rock Mine, South Australia: description and crystal structure. Mineralogical Magazine 77: 385–398.

  4. Fairbrother, L., Etschmann, B., Brugger, J., Shapter, J., Southam, G., and Reith, F. (2013).  Biomineralization of gold in biofilms of Cupriavidus metallidurans. Environmental Science and Technology 47: 2628–2635. TRaX 239.

  5. Zhao, J., Brugger, J., Xia, F., Nogthai, Y., Chen, G., and Pring, A. (2013). Dissolution-reprecipitation vs. solid state diffusion: Mechanism of mineral transformations in sylvanite, (AuAg)2Te4, under hydrothermal conditions. American Mineralogist 98: 19–32. TRaX 238.

  6. Mei, Y., Sherman, D., Liu, W. and Brugger, J. (2013). Ab initio molecular dynamics simulation and free energy exploration of copper(I) complexation by chloride and bisulfide in hydrothermal fluids. Geochimica et Cosmochimica Acta 102: 45–64. DOI: 10.1016/j.gca.2012.10.027. TRaX 242. 

  7. Tooth, B., Etschmann, B., Pokrovski, G. S., Testemale, D., Hazemann, J.-L., Grundler, P. V., and Brugger, J. (2013). Bismuth speciation in hydrothermal fluids: an X-ray absorption spectroscopy and solubility study. Geochimica et Cosmochimica Acta 101: 156–172. TRaX 240. 

  8. Qian, G., Brugger, J., Testemale, D., Skinner, W., and Pring, A. (2013).  Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica et Cosmochimica Acta 100: 1–10. TRaX 241. 

  9. Tian, Y., Etschmann, B., Liu, W., Borg, S., Mei, Y., Testemale, D., O’Neill, B., Rae, N., Sherman, D., Ngothai, Y., Johannessen, B., Glover, C., and Brugger, J. (2012). Speciation of nickel(II) chloride complexes in hydrothermal fluids: in situ XAS study. Chemical Geology 334: 345–363. TRaX #244.

  10. Cabral, A. R., Reith, F., Lehmann, B., Brugger, J., Meinhold, G., Tupinambá, M., and Kwitko-Ribeiro, R. (2012). Titanium mobility: insights from anatase nanoparticles on supergene platinum–palladium grains from Brazil. Chemical Geology 334: 182–188. TRaX 245.